Norm
Norm(v)
returns the norm of the vector
v
Norm(m, l)
computes the
l
-norm of matrixm
(currently only works for vectors!).
Norm(m)
computes the norm of matrix
m
(SVD)
Norm(m, "Frobenius")
computes the Frobenius norm of matrix
m
See
Examples
>> Norm({1, 2, 3, 4}, 2)Sqrt(30)
>> Norm({10, 100, 200}, 1)310
>> Norm({a, b, c})Sqrt(Abs(a)^2+Abs(b)^2+Abs(c)^2)
>> Norm({-100, 2, 3, 4}, Infinity)100
>> Norm(1 + I)Sqrt(2)
The first Norm argument should be a number, vector, or matrix.
>> Norm({1, {2, 3}})Norm({1, {2, 3}})
>> Norm({x, y})Sqrt(Abs(x)^2+Abs(y)^2)
>> Norm({x, y}, p)(Abs(x) ^ p + Abs(y) ^ p) ^ (1 / p)
>> Norm({{1,2}, {3,4}})5.46499
The second argument of Norm, 0, should be a symbol, Infinity, or an integer or real number not less than 1 for vector p-norms; or 1, 2, Infinity, or “Frobenius” for matrix norms.
>> Norm({x, y}, 0)Norm({x, y}, 0)
The second argument of Norm, 0.5, should be a symbol, Infinity, or an integer or real number not less than 1 for vector p-norms; or 1, 2, Infinity, or “Frobenius” for matrix norms.
>> Norm({x, y}, 0.5)Norm({x, y}, 0.5)
>> Norm({})Norm({})
>> Norm(0)0
Implementation status
- ✅ - full supported