Array
Array(f, n)
returns the
n
-element list{f(1), ..., f(n)}
.
Array(f, n, a)
returns the n-element list
{f(a), ..., f(a + n)}
.
Array(f, {n, m}, {a, b})
returns an
n
-by-m
matrix created by applyingf
to indices ranging from(a, b)
to(a + n, b + m)
.
Array(f, dims, origins, h)
returns an expression with the specified dimensions and index origins, with head
h
(instead ofList
).
Examples
>> Array(f, 4){f(1),f(2),f(3),f(4)}
>> Array(f, {2, 3}){{f(1,1),f(1,2),f(1,3)},{f(2,1),f(2,2),f(2,3)}}
>> Array(f, {2, 3}, {4, 6}){{f(4,6),f(4,7),f(4,8)},{f(5,6),f(5,7),f(5,8)}}
>> Array(f, 4){f(1), f(2), f(3), f(4)}
>> Array(f, {2, 3}){{f(1, 1), f(1, 2), f(1, 3)}, {f(2, 1), f(2, 2), f(2, 3)}}
>> Array(f, {2, 3}, 3){{f(3, 3), f(3, 4), f(3, 5)}, {f(4, 3), f(4, 4), f(4, 5)}}
>> Array(f, {2, 3}, {4, 6}){{f(4,6),f(4,7),f(4,8)},{f(5,6),f(5,7),f(5,8)}}
The next line gives 12 samples of Cos(x/4)]
starting at (x=4)
.
>> Array(Cos(#/4)&, 12, 4){Cos(1),Cos(5/4),Cos(3/2),Cos(7/4),Cos(2),Cos(9/4),Cos(5/2),Cos(11/4),Cos(3),Cos(13/4),Cos(7/2),Cos(15/4)}
Array can take a fourth argument which should be applied to the result instead of List
.
The next line finds the minimum of the samples. Notice the function to be applied must be the fourth argument, so you must provide an starting value as a third argument.
>> Array(Cos(#/4)&, 12, 4, Min)Cos(13/4)
>> Array(f, {2, 3}, 1, Plus)f(1,1)+f(1,2)+f(1,3)+f(2,1)+f(2,2)+f(2,3)
{2, 3} and {1, 2, 3} should have the same length.
>> Array(f, {2, 3}, {1, 2, 3})Array(f, {2, 3}, {1, 2, 3})
Single or list of non-negative integers expected at position 2.
>> Array(f, a)Array(f, a)
Single or list of non-negative integers expected at position 3.
>> Array(f, 2, b)Array(f, 2, b)
Implementation status
- ✅ - full supported