Sum
Sum(expr, {i, imin, imax})
evaluates the discrete sum of
expr
withi
ranging fromimin
toimax
.
Sum(expr, {i, imax})
same as
Sum(expr, {i, 1, imax})
.
Sum(expr, {i, imin, imax, di})
i
ranges fromimin
toimax
in steps ofdi
.
Sum(expr, {i, imin, imax}, {j, jmin, jmax}, ...)
evaluates
expr
as a multiple sum, with{i, ...}, {j, ...}, ...
being in outermost-to-innermost order.
See
Examples
>> Sum(k, {k, 1, 10})55
Double sum:
>> Sum(i * j, {i, 1, 10}, {j, 1, 10})3025
>> Table(Sum(i * j, {i, 0, n}, {j, 0, n}), {n, 0, 4}){0,1,9,36,100}
Symbolic sums are evaluated:
>> Sum(k, {k, 1, n})1/2*n*(1+n)
>> Sum(k, {k, n, 2*n})3/2*n*(1+n)
>> Sum(k, {k, I, I + 1})1+I*2
>> Sum(1 / k ^ 2, {k, 1, n})HarmonicNumber(n, 2)
Verify algebraic identities:
>> Simplify(Sum(x ^ 2, {x, 1, y}) - y * (y + 1) * (2 * y + 1) / 6)0
Infinite sums:
>> Sum(1 / 2 ^ i, {i, 1, Infinity})1
>> Sum(1 / k ^ 2, {k, 1, Infinity})Pi^2/6
>> Sum(x^k*Sum(y^l,{l,0,4}),{k,0,4})1+y+y^2+y^3+y^4+x*(1+y+y^2+y^3+y^4)+(1+y+y^2+y^3+y^4)*x^2+(1+y+y^2+y^3+y^4)*x^3+(1+y+y^2+y^3+y^4)*x^4
>> Sum(2^(-i), {i, 1, Infinity})1
>> Sum(i / Log(i), {i, 1, Infinity})Sum(i/Log(i),{i,1,Infinity})
>> Sum(Cos(Pi i), {i, 1, Infinity})Sum(Cos(i*Pi),{i,1,Infinity})
Implementation status
- ☑ - partially implemented